Properties of the apamin-sensitive Ca2+-activated K+ channel in PC12 pheochromocytoma cells which hyper-produce the apamin receptor.
نویسندگان
چکیده
Undifferentiated PC12 cell produce high levels of apamin receptors (measured with 125I-apamin) after 7 days in culture. These levels are at least 50 times higher than those found in other cellular types which are also known to have apamin receptors and apamin-sensitive Ca2+-activated K+ channels in their membranes. Treatment of undifferentiated PC12 cells with nerve growth factor maintains these cells in a state having a low level (10 times less after 7 days of culture) of apamin receptors. Ca2+ injection into PC12 cells with the calcium ionophore A23187 has been used to monitor the activity of the Ca2+-activated K+ channel following 86Rb+ efflux. A large component of this Ca2+-activated 86Rb+ efflux is inhibited by apamin. Half-maximum inhibition by apamin of both 86Rb+ efflux and 125I-apamin binding was observed at 240 pM apamin. Another component of 86Rb+ efflux is due to another type of Ca2+-activated K+ channel which is resistant to apamin and sensitive to tetraethylammonium. The Ca2+ channel activator Bay K8644 also triggers an apamin-sensitive Ca2+-dependent 86Rb+ efflux. Bay K8644 has been used to analyze the internal Ca2+ concentration dependence of the apamin-sensitive channel activity. Under normal conditions, the internal Ca2+ concentration is 109 +/- 17 nM, and the apamin-sensitive channel is not activated. The channel is fully activated at an internal Ca2+ concentration of 320 +/- 20 nM.
منابع مشابه
Interactions of the neurotoxin apamin with a Ca2+-activated K+ channel in primary neuronal cultures.
Mono[125I]iodoapamin bound to specific sites on cultured rat embryonic neurons. The dissociation constant for the receptor-neurotoxin complex measured at equilibrium was 60-120 pM at pH 7.2 and 4 degrees C, with a maximal binding capacity of 3-8 fmol/mg of cell protein. Apamin inhibited calcium ionophore-induced 86Rb+ release from cell cultures. The dose effect curve for this pharmacological te...
متن کاملApamin Boosting of Synaptic Potentials in CaV2.3 R-Type Ca2+ Channel Null Mice
SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availabil...
متن کاملSmall-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity.
Apamin-sensitive, small-conductance, Ca2+-activated K+ channels (SK channels) modulate neuronal excitability in CA1 neurons. Blocking all SK channel subtypes with apamin facilitates the induction of hippocampal synaptic plasticity and enhances hippocampal learning. In CA1 dendrites, SK channels are activated by Ca2+ through NMDA receptors and restrict glutamate-mediated EPSPs. Studies of SK cha...
متن کاملCa(2+)-activated K+ channels in human leukemic T cells
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independen...
متن کاملApamin, a blocker of the calcium-activated potassium channel, induces neurodegeneration of Purkinje cells exclusively.
Following acute intracerebroventricular injections of 1 ng of apamin and chronic apamin infusion (0.4 ng/microl, 0.5 microl/h, 14 days), the rat brains exhibited bilateral damage only in the cerebellum. The argyrophilic cells were Purkinje cells in copula pyramis, flocculus, paraflocculus, and paramedian lobules. These data demonstrate that the inactivation of small conductance Ca2+-activated K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 261 19 شماره
صفحات -
تاریخ انتشار 1986